2 resultados para Claudin

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. MATERIALS & METHODS: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. RESULTS: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. CONCLUSION: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1(+)/CIMP2(-)/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER(-)/PR(-)/HER2(-); MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm(3), and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm(3). In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm(3) within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy.